Principais Conceitos de Python

Finalmente, no artigo Principais Conceitos de Python, apresentamos os principais conceitos de Python, abrangendo desde a criação de funções até a interação com APIs e bancos de dados. Então, com sua sintaxe clara e ecossistema robusto, Python se destaca como uma linguagem versátil e popular, sendo amplamente utilizada em diversas áreas da computação. Assim, ao dominar esses conceitos fundamentais, você estará preparado para explorar todo o potencial que Python oferece, permitindo que desenvolva soluções criativas e inovadoras para os desafios da programação. Continue praticando, aprendendo e aprimorando suas habilidades em Python, pois essa linguagem continuará a inspirar e impulsionar sua jornada no mundo da programação.

Finalmente, no artigo Principais Conceitos de Python, apresentamos os principais conceitos de Python, abrangendo desde a criação de funções até a interação com APIs e bancos de dados. Então, com sua sintaxe clara e ecossistema robusto, Python se destaca como uma linguagem versátil e popular, sendo amplamente utilizada em diversas áreas da computação. Assim, ao dominar esses conceitos fundamentais, você estará preparado para explorar todo o potencial que Python oferece, permitindo que desenvolva soluções criativas e inovadoras para os desafios da programação. Continue praticando, aprendendo e aprimorando suas habilidades em Python, pois essa linguagem continuará a inspirar e impulsionar sua jornada no mundo da programação.

Entendendo o Apache Spark

O Apache Spark atualmente é a principal ferramenta na computação distribuída quando o assunto é bigdata. Diferentemente do passado hoje há um mercado muito vibrante com concorrentes, mas não tiram o brilho desse. Ele suporta linguagens de programação diferentes, algo fundamental para atrair programadores, engenheiros ou cientistas de dados. Suas estratégias internas são rebuscadas, como é o caso da LazyEvaluation e suas DAG's criadas sob medida. Além disso ele possui diversas bibliotecas públicas ao invés do tooling do Hadoop que tinha uma manutenção complicada. O artigo Entendendo o Apache Spark explora um pouco de tudo isso.

O Apache Spark atualmente é a principal ferramenta na computação distribuída quando o assunto é bigdata. Diferentemente do passado hoje há um mercado muito vibrante com concorrentes, mas não tiram o brilho desse. Ele suporta linguagens de programação diferentes, algo fundamental para atrair programadores, engenheiros ou cientistas de dados. Suas estratégias internas são rebuscadas, como é o caso da LazyEvaluation e suas DAG’s criadas sob medida. Além disso ele possui diversas bibliotecas públicas ao invés do tooling do Hadoop que tinha uma manutenção complicada. O artigo Entendendo o Apache Spark explora um pouco de tudo isso.

Formatos de serialização para bigdata

O conceito de bigdata pressupõe a variedade dos tipos de dados. Temos imagens, vídeos, músicas, mas também temos postagens em redes sociais, e temos sistemas tradicionais com dados tabulares. Lidar com essa variedade exige formas diferentes. Os formatos Parquet, Orc e Avro têm especial destaque por serem binários, suportando escritas e leituras rápidas, mesmo com o dado bruto (ou quase). O artigo Formatos de serialização para bigdata fala sobre esses formatos e alguns outros e como eles podem ser utilizados.

O conceito de bigdata pressupõe a variedade dos tipos de dados. Temos imagens, vídeos, músicas, mas também temos postagens em redes sociais, e temos sistemas tradicionais com dados tabulares. Lidar com essa variedade exige formas diferentes. Os formatos Parquet, Orc e Avro têm especial destaque por serem binários, suportando escritas e leituras rápidas, mesmo com o dado bruto (ou quase). O artigo Formatos de serialização para bigdata fala sobre esses formatos e alguns outros e como eles podem ser utilizados.

O Essencial do Hadoop

O Hadoop materializou o conceito de bigdata e modificou toda a forma em que o mercado encara os dados. Ele tem uma arquitetura muito bem feita para suportar grandes volumes. Ele possui um sistema de arquivos distribuidos, o HDFS, que lida com esse problema. Além disso há o map-reduce que em alinhamento com o HDFS produz cálculos em massas inacreditáveis de dados: Ainda que utilizando vários computadores de desempenho mediano. Por fim o Yarn possibilizou uma maior extensibilidade do produto, dando abertura para novas ferramentas como o Zookeeper, Pig ou Spark. O Essencial do Hadoop dá uma visão panorâmica sobre o produto além de pequenos exemplos.

O Hadoop materializou o conceito de bigdata e modificou toda a forma em que o mercado encara os dados. Ele tem uma arquitetura muito bem feita para suportar grandes volumes. Ele possui um sistema de arquivos distribuidos, o HDFS, que lida com esse problema. Além disso há o map-reduce que em alinhamento com o HDFS produz cálculos em massas inacreditáveis de dados: Ainda que utilizando vários computadores de desempenho mediano. Por fim o Yarn possibilizou uma maior extensibilidade do produto, dando abertura para novas ferramentas como o Zookeeper, Pig ou Spark. O Essencial do Hadoop dá uma visão panorâmica sobre o produto além de pequenos exemplos.

Banco de dados: Teorema CAP

Alguns deles existem há muito tempo mas se popularizaram a partir de 2010 para suportar o aumento crescente dos dados, das variedades dos dados e das arquiteturas emergentes. O Teorema CAP é uma estratégia para pensar em como selecionar bancos de dados para as arquitetura que se apresentam.

Em resumo há muitos bancos de dados. Alguns deles existem há muito tempo mas se popularizaram a partir de 2010 para suportar o aumento crescente dos dados, das variedades dos dados e das arquiteturas emergentes. O Teorema CAP é uma estratégia para pensar em como selecionar bancos de dados para as arquitetura que se apresentam.